Performances of a Polaritonic Refrigerant

Maxime Richard¹

Sebastian Klembt¹, Emilien Durupt¹, Sanjoy Datta², Thosten Klein³, Yoan Léger⁴, Augustin Baas¹, Detlef Hommel³, Carsten Kruse³, Anna Minguzzi²

 ¹ Institut Néel, CNRS-CEA-Université Grenoble Alpes, BP166, 38042 Grenoble, France
 ² Laboratoire de Physique et Modélisation des Milieux Condensés, CNRS-Université Grenoble Alpes, BP166, 38042 Grenoble, France
 ³Institut für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee, 28359 Bremen, Germany
 ⁴ Laboratoire FOTON, CNRS, INSA de Rennes, 35708 Rennes, France

Outline

Microcavity in the strong coupling regime

Outline

Outline

0 – Back to the principle of cooling many body systems with light

Many body system

Cooling by anti-Stokes fluorescence (ASF) Cooling the <u>vibrational</u> degrees of freedom

Thermal vibrations (phonons) in a solid

Cooling by anti-Stokes fluorescence (ASF) Cooling the <u>vibrational</u> degrees of freedom

Thermal vibrations (phonons) in a solid

Cooling by anti-Stokes fluorescence (ASF) Cooling the <u>vibrational</u> degrees of freedom

Cooling by anti-Stokes fluorescence (ASF) Cooling the <u>vibrational</u> degrees of freedom

Cooling by anti-Stokes fluorescence (ASF) Cooling the <u>vibrational</u> degrees of freedom

1- Anti-Stokes fluorescence mechanism

Removes $\hbar\Omega$ per scattering event from the thermal phonons bath

Realistic solids have defects

Credit: NDT Education Resource Center

Realistic solids have defects

Credit: NDT Education Resource Center

2- Non-radiative recombination

Adds $\hbar\omega_0$ per scattering event to the thermal phonons bath

Vibrations (phonons) in a lattice

Requirements to achieve net cooling power in solids

 \rightarrow Largest possible quantum efficiency η

→ Largest possible oscillator strength fi.e. short radiative lifetime τ of e

atoms embedded in solid matrix

Ytterbium dopped glass

Setup for optical cooling of a $LiYF_4$: Yb rod [1]

From room temperature down to T~110K [2]

- Excellent η
- Poor f
- Coupling with phonons is of 2nd order

Cooling efficiency in LiYF₄:Yb under optical cooling [1]

[1] D. V. Seletskiy *et al.* Nature Photonics **4** 161 (2010)
[2] D. V. Seletskiy *et al.* Optics Express **19**, 18229 (2011)

Semiconductor hetero/nanostructures

CdS nanobelts

image credit: L. Li et al. Sensors 14, 7332 (2014)

From room temperature down to T~260K [3]

• Lower η

- **larger** *f* (excitonic enhancement [4])
- Coupling with phonons is of 2nd order

Raman spectra of a single CdS nanobelt: from ref [3]

[3] J. Zhang et al. , Nature 493, 504-508 (2013)
[4] G. Rupper et al. Phys. Rev. Lett. 97 117401 (2006)

coupling regime

[5] G. Rozas et al. arXiv:1405.0886 (2014)

[5] G. Rozas et al. arXiv:1405.0886 (2014)

[5] G. Rozas et al. arXiv:1405.0886 (2014)

Measured ASF intensity cts/s (log scale)

Measured ASF intensity cts/s (log scale)

Measured ASF intensity cts/s (log scale)

ASF intensity cts/s (log scale)

Intermediate summary

+ Setup detection efficency calibration η =1.1%

Intermediate summary

Intermediate summary

Cooling power (Watts) Absorbed phonon energy Fast and slow cooling event rate $P_{\rm fr} = \int d\omega \{ P_{\rm las} \hbar(\omega - \omega_0) A^{(1)}(\omega) - P_{\rm las}^2 \hbar(2\omega_0 - \omega) A^{(2)}(\omega) \}$

• $P_{fr, max} = 0.1 \pm 0.02 \text{ pW}$ • $p_{fr, max} = 80 \pm 16 \mu \text{W/cm}^3$

• No temperature cutoff

No temperature cutoff
High participation ratio ρ of fast cooling mechanism

• P_{fr, max} = 0.1±0.02 pW

• $p_{fr, max} = 80 \pm 16 \mu W/cm^3$

No internal equilibration (vanishing pp interaction regime)
 →Bi-modale polariton distribution : a « cold » and a « hot » fluid coexist

« hot » polariton fluid properties = polaritonsthat did interact with thermal phonons

« hot » polariton fluid properties = polaritonsthat did interact with thermal phonons

Heated polaritons are "hotter" than the phonon thermsleves !

Phonon bath

Conclusion

Properties of a polaritonic refrigerent

- Net Positive cooling power at low laser power
- Involves an ultrafast cooling dynamics mechanism (1ps)
- No temperature cutoff
- Full optical access to thermidynamical properties

• Main limitation so far : 2-photon absorption

« Cold » injected polaritons behave like an out-of-equilibrium refrigerant fluid

 \rightarrow Bi-modal « cold » and « hot » fluid

 \rightarrow at low T, polaritons removes thermal phonons of higher

energy than normally allowed by thermal equilibrium

 \rightarrow non-eq. can be a resource !

Outlook

Non thermal character is fully tunable ! :

- pp interactions ⇔ internal equiibrations
- A tunable thermal reservoir can be added : externally pumped excitons

- Thermodynamical properties of polariton superfluids

= thermodynamics of a (out-of-eq.) weakly interacting Bose gas exchanging heat with a thermal reservoir

Acknowledgements

S. Datta

+ T. Klein for sample fabrication in Bremen

A. Baa

